A New Learning Algorithm for the Fusion of Adaptive Audio-Visual Features for the Retrieval and Classification of Movie Clips
نویسندگان
چکیده
This paper presents a new learning algorithm for audiovisual fusion and demonstrates its application to video classification for film database. The proposed system utilized perceptual features for content characterization of movie clips. These features are extracted from different modalities and fused through a machine learning process. More specifically, in order to capture the spatio-temporal information, an adaptive video indexing is adopted to extract visual feature, and the statistical model based on Laplacian mixture are utilized to extract audio feature. These features are fused at the late fusion stage and input to a support vector machine (SVM) to learn semantic concepts from a given video database. Based on our experimental results, the proposed system implementing the SVM-based fusion technique achieves high classification accuracy when applied to a large volume database containing Hollywood movies.
منابع مشابه
Neuro-ANFIS Architecture for ECG Rhythm-Type Recognition Using Different QRS Geometrical-based Features
The paper addresses a new QRS complex geometrical feature extraction technique as well as its application for electrocardiogram (ECG) supervised hybrid (fusion) beat-type classification. To this end, after detection and delineation of the major events of ECG signal via a robust algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images ...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملThe Impact of Humorous Movie Clips on Better Learning of English Language Vocabulary
This study examined the effects of humorous movie clips on better learning of English language vocabulary. Humor is an important human behavior that plays a vital role in communication and social interactions. This subject has been rarely investigated in Iranian English classes. The researchers used quantitative method. Because all of variables were not controllable, therefore quasi-experimenta...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملAssessing Semantic Relevance by Using Audiovisual Cues
This paper presents two complementary approaches for assessing semantic relevance in video retrieval—(1) adaptive video indexing and (2) elemental concept indexing. Both approaches make extensive use of audiovisual cues. In the former, retrieval is performed by using implicit semantic indices through audio and visual features. Audio features are extracted by statistical time-frequency analysis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Signal Processing Systems
دوره 59 شماره
صفحات -
تاریخ انتشار 2010